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Abstract. We propose a methodology to locate station-
ary points on a quantum mechanical/molecular mechan-
ical potential-energy surface. This algorithm is based on
a suitable approximation of an initial full Hessian
matrix, either a modified Broyden—Fletcher—-Goldfarg—
Shanno or a Powell update formula for the location of,
respectively, a minimum or a transition state, and the so-
called rational function optimization. The latter avoids
the Hessian matrix inversion required by a quasi-
Newton—Raphson method. Some examples are pre-
sented and analyzed.

Key words: Quantum mechanical/molecular mechanical
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1 Introduction

A challenging problem in computational chemistry is the
optimization of a function of many degrees of freedom.
The computational effort and performance of each
optimization method basically depend on the number
of variables and the evaluation cost of the function under
optimization and its derivatives. In addition, the
degradation of the optimization method is strongly
related to the shape or behavior of the function. From
the experience accumulated in the past years in the use of
optimization algorithms [1] the main conclusion is that
the efficiency of any optimization method is characterized
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by three factors; namely, the type of coordinates used to
define the system, the well behavior of the Hessian matrix
and the way to predict the next molecular geometry
during the iterative process. In the last two decades much
research has been done to propose and improve
algorithms to optimize the geometry of large molecular
systems. The main reasons for this effort are the recent
developments of combined quantum mechanical (QM)
and molecular mechanical (MM) approaches to evaluate
the potential energy [2, 3] and linear scaling methodol-
ogies which both now allow the computation of very
large reactive systems.

The algorithms used to find stationary points of large
molecular systems can be divided into two groups. The
first group contains the mixed algorithms which, in fact,
combine a truncated Newton—Raphson optimizer with a
preconditioned linear conjugate- gradient technique [4,
5]. In the second group, the algorithms are basically
those employed to optimize molecules of medium size
using QM potentials, but with some minor changes. The
modifications of these algorithms account for the fact
that the direct application of these techniques needs a
big storage memory for large systems [6—13]. One of the
most important factors in optimization is the selection of
the coordinate system and owing to this fact much effort
has been concentrated on the treatment of the G matrix
[14]. For molecules of medium size the G matrix is fully
diagonalized, which implies a cubic scaling of the
computational effort with the number of redundant co-
ordinates. This fact limits the optimization of large
molecular systems. To avoid this important limitation,
the transformation of gradient and coordinates and the
computation of the delocalized internal coordinates
is carried out in terms of iterative solutions of linear
equations [1, 7, 8, 10-13].

In contrast to the attention on the treatment of the G
matrix, very little effort has been made in the evaluation
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and manipulation of the Hessian matrix, which is one of
the factors that ensures efficiency in the optimization
process. For molecules of medium size the storage of the
Hessian matrix (analytic or approximated) is O(n?)
memory locations, where n is the number of variables.
On the other hand, the solution of the standard New-
ton—Raphson equations implies O(n*) additions and
multiplications [4]. This fact is again a serious limitation
for the optimization of large molecular systems. In
minimization problems the Hessian matrix is updated at
each iteration by using the Broyden—Fletcher—Goldfarg—
Shanno (BFGS) formula [15]. There already exist
expressions which avoid storing the full Hessian matrix
using the BFGS update formula for large molecular
systems, the so-called limited BFGS (L-BFGS) [16-18].
Billeter et al. [11] used the L-BFGS formula to update
the Hessian matrix when a minimization of a large
molecular system is carried out. In the specific case of
location and optimization of transition structures, both
Turner et al. [10] and Billeter et al. [11] proposed a
partition of the molecular system such that the
“environment” part is minimized using L-BFGS and a
first-order saddle point in the degrees of freedom of the
rest of the molecule (the core) is searched for. In this way
a Hessian matrix needs only to be stored and maintained
for the core.

Recently Anglada et al. [9] reformulated the Powell
formula to update Hessian matrices [19] with limited
memory, L-Powell. Since the Powell formula is the
standard update used in the optimization of transition
structures [20, 21], the reformulation of Anglada et al.
[9] enables the Powell formula [19] to be used to locate
large transition structures without partition of the
Hessian matrix. In addition Anglada et al. [9] used the
augmented Hessian (AH) or rational function
optimization (RFO) technique [20-26] to compute the
next geometry. The Hessian matrix is diagonalized
partially; only the first two eigenpairs are computed.
These two eigenpairs are related to the transition vector
and the geometry displacement vector [20, 21]. The
diagonalization of the AH is carried out by using a
Lanczos-type algorithm [27, 28] in the way that the full
Hessian matrix is never stored in the memory of the
computer. In general, the RFO technique predicts the
best-improved molecular geometry for the next
iteration. This fact contributes to the stability of the
optimization process.

In this article we present a location of stationary
points of relatively large molecules by using the QM,
MM and QM/MM methodologies and the RFO
technique. The update formula used in this iterative
process for the location of a minimum is a modified form
of the BGFS formula.

2 Method

The standard Newton—Raphson method is based on the optimi-
zation of a quadratic model of the energy with respect to the
geometry parameters. By replacing this quadratic model by a ra-
tional function approximation we obtain the RFO method [20, 21].
This rational expansion at iteration k is
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where the vector q; contains the current molecular coordinates, the
vector Aq, gives the correction of the molecular geometry and g,
and By, are the gradient vector and the Hessian matrix (analytic or
approximated) of the energy, E, at qy, respectively. The S; matrix is
a symmetric matrix that has to be specified but normally is taken as
the unit matrix I. The matrix that appears in the numerator of
Eq. (1) is the AH matrix. The advantage in using the RFO method
rather than the standard Newton—Raphson method is due to the
fact that the rational approximation by definition represents the
energy values as conic isocontours which are not necessarily con-
centric and similar [24]. This conic behavior of the contours of the
approximated energy function guides the Aq, vector in the direction
of the desired stationary point region [24]. The vector Aqy that
extremalizes q(Aqy), i.e., V4q(Aqr) =0, is obtained by diagonaliza-
tion of the AH matrix [20, 21]:
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where (v’gk))T = (v(zkg7 e ufﬁl‘v). The corresponding displacement
vector is evaluated as
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In Eq. (3) if one is interested in locating a minimum then v=1, and
for a transition structure (first-order saddle point) v=2 [20, 21, 25].
Finally, the quadratic variation energy, Q(Aqy), is evaluated as
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where v is selected as explained in Eq. (3). Note that as the opti-
mization process converges, Vlli} tends to 1 and 2% to 0.
When we are trying to locate a minimum, the Hessian matrix is
updated by using a modified form of the BFGS formula [15]. The
most general rank-two update Hessian matrix formula is [15, 29]

k
Biyi =Bo+ Y [iwf +ujf — (ifAq)un]] k=0,1,..., (5)
i=0

where j;=D; — A;, D; = g;+1 — g, Ai=B; Aq;, u,=M; Aqt‘/(AqiTMi
Aq;) and By is the approximated Hessian matrix. M; represents a
symmetric and positive-definite matrix. Different election of the M;
matrix leads to a different update Hessian matrix formula, in par-
ticular for the BFGS update, M;=aB, | +b;B;, for some selected
positive-definite scalars a; and b; [30]. Before showing the structure
of the modified BFGS formula we remember that MAq;= @B,
Aq;+bB; Aq;=aD;+ b;A,, where the Newton—Raphson condition
has been employed [15, 29]. Now the proposed modified form of the
BFGS expression only differs with respect to the normal BFGS in
the calculation of the two scalars ¢; and b;. In this modified form
these two scalars are evaluated as
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Note that both @; and b; are positive quantities. The resulting
B, updated Hessian will be positive-definite if both the B, matrix
and the scalar Aq Dy, are positive-definite as occurs in the normal
BFGS formula.

For location of first-order saddle points the Powell formula is
used, where in this case the M matrix of Eq. (5) is equal to the unit
matrix, L.

The guess By matrix is selected in the following way

Stored in a small matrix/\
QM 0
By = (®)

Stored in a vector

The general update formula given in Eq. (5) makes it possible
to optimize any type of stationary point even for large molecular
systems since the Bjy;; matrix is evaluated be/ using the By
matrix and the set of the pair vectors {j;, u;},—;" and the set of
scalars {AqiTj,-},zlk. At each iteration of the optimization process
only two vectors, j, and w;, and the scalar Aq{j/\, should be
stored. Finally, the resulting Aqy is scaled by a factor if the step
length |AqTAq,| > R, where R is the trust radius [15]. The trust
radius is modified according to a dynamic algorithm used in
Ref. [26].

When L-BFGS is used only a matrix vector product is em-
ployed. The starting vector is v;, =1 and v/;” = 0. The matrix
product between By and v ,() is evaluated according to the next
formula:

k—1
By = Bov® + 3 (e +dPw) k=12, )
I1=0

where ¢ = uTv® and d® = jTv® — AqTjulv®.

3 Implementation

To obtain the QM/MM potential energy every mole-
cular system was partitioned into a reactive part (the
core) treated quantum mechanically with the PM3 [31]
or the AMI1 [32] semiempirical Hamiltonians and a
nonreactive part (the environment) treated by means of
molecular mechanics with the AMBER force field [33].
The QM atoms are influenced by the partial charges of
the MM atoms, and, in addition, bonding and van der
Waals interactions between the two regions are included
consistently. We used link atoms to cap exposed valence
sites due to bonds which cross the QM/MM boundary.
The AMBER 5.0 (Roar-cp module) [34] program was
used to carry out the QM/MM calculations. The Roar-
cp module is the result of coupling Roar 2.0, ie., a
modified version from the Pennsylvania State University
of Sander (the basic energy minimizer and molecular
dynamics program of AMBER), and the semiempirical
quantum mechanical program MOPAC 7.0 [35].
The search algorithm works in the following way:

1. An initial geometry q, in Cartesian coordinates is
chosen. The QM region, the MM region and the
corresponding link atoms are defined. Then, three
environment atoms are always fixed in order to get
rid of the translations and rotations of the whole
molecular system.
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2. The QM/MM energy and the gradient at qq are
calculated using the Roar-cp module.

3. The guess By Hessian matrix is built up according to
Eq. (8). To this aim, we implemented numerical
second derivatives in the Roar-cp module as required
here. Diagonalization of By allows us to test whether
qo lies on the suitable quadratic region of the
potential-energy surface (i.e., zero or one negative
eigenvalue for searching a minimum or a transition
state, respectively). If this is not the case, the By
matrix is forced to have the convenient number of
negative eigenvalues.

4. The RFO method plus a procedure to solve the
corresponding secular equations through the full
diagonalization of the AH matrix are used in order
to obtain the displacement vector at each iteration.
This vector is scaled by a factor according to
the procedure described in Sect. 2. Then, the new
geometry qy 1 is obtained as a result of the current &
iteration.

5. If the square root of the gradient norm at qg. is
smaller than a suitable convergence criterion, it is
considered that the corresponding stationary point
has been reached and the search ends. Otherwise, the
algorithm proceeds to step 6.

6. For minima, the modified BFGS formula (m-BFGS)
given in Egs. (5), (6) and (7) is used to update the
Hessian matrix. For transition states the Powell
formula is employed. Owing to the update the QM
and the MM parts of the resulting B, ; Hessian
matrix become coupled and the MM part is no longer
diagonal. Diagonalization of B, allows us to test
whether q; - lies on the suitable quadratic region of
the potential-energy surface. If this is not the case, the
B, . | matrix is forced to have the convenient number
of negative eigenvalues. Then the algorithm proceeds
to the step 4 to start a new iteration cycle.

All the calculations, except the evaluation of energies
and gradients, were carried out with the algorithm just
described. Hereafter this algorithm is called RFO-m-
BFGS or RFO-Powell when a minimum or a transition
state, respectively, is looked for.

4 Results and discussion
4.1 Description of the systems studied

To test our algorithm we chose several chemical or
biochemical systems, taken from published works, from
small to medium size. We ran both geometry minimiza-
tion and transition-state searches on every molecular
system. In what follows we describe (see Fig. 1) the
molecular systems we have chose as test systems.

The DHAP system is the deprotonated dihydrox-
yacetone phosphate (the dihydroxyacetone phosphate is
the substrate of triosephosphate isomerase studied by
Alagona et al. [36]). The reaction tested is a proton
transfer between the hydroxy and the ketone group.
DHAP has 14 atoms and we partitioned it into a reactive
part of nine atoms treated with the PM3 Hamiltonian
and a nonreactive part of five atoms treated with a MM
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potential. Note that in all the systems pictured in Fig. 1
the shaded zone corresponds to the QM region. A link
atom is required for each covalent bond that joins any
atom belonging to the QM region with any atom lying in
the MM (nonreactive) region. Then, only one link atom
has to be included in this case. The overall charge for
this system is —3 au, while the total charge of the QM
region is —1 au.

The PHTAL system is the phthalate anion.
The reaction consists of a proton transfer between the
two carboxylic groups. The whole system has 17 atoms.
Seven of them, including both carboxylic groups, are
treated with the AM1 semiempirical Hamiltonian, and
the ten atoms of the phenyl ring are in the MM part.
Two link atoms are added. The overall charge for this
system is —1 au. The total charge of the QM region is
also -1 au.

The TIM system is a model of the active site of
triosephosphate isomerase studied by Cui and Karplus
[37], where the deprotonated dihydroxyacetone phos-
phate is emulated by an enediolate. Nineteen atoms are
involved here. Seven atoms are in the quantum part
treated with the PM3 Hamiltonian, and a singly proto-
nated imidazole ring modeling an histidine, i.e., 12
atoms, defines the MM part. No link atoms are required
since there is no covalent bond crossing the QM/MM
frontier. The reaction studied is a proton transfer be-
tween the two oxygen atoms, similar to that studied in
DHAP. The overall charge for this system is —1 au. The
total charge of the QM region is also —1 au. In Table 1
TIM1 and TIM?2 stand for the reactant and the product
of the reaction, respectively.

Fig. 1a—e. Schematic description
of the molecular systems studied
in this work. The shaded zone

in each picture corresponds to the
quantum mechanical region

] ':l:H:a
f: ANTA e

LDH is a model of the active site of lactate dehy-
drogenase enzyme studied by Andrés et al. [38]. The
whole system is medium-sized and constituted by a total
of 55 atoms. It includes a pyruvate and a nicotinamide
ring involving 30 atoms in the reactive part treated with
PM3, and a guanidino group and a methyl imidazole
including 25 atoms for the MM part. As in the TIM
system, no link atoms are required. The reaction studied
is the transformation of pyruvate to lactate owing to a
hydride transfer between pyruvate and nicotinamide.
The overall charge for this system is 1 au, while the QM
region is neutral. In order to reproduce the system stu-
died by Andrés et al. [38] we also performed an all-QM
calculation, including all 55 atoms in the quantum part.

The biggest system tested here is ANTA, which is a
decapeptide called antamanide, studied by Fischer and
Karplus [39]. In that work the reaction studied was a
conformational change in a proline ring. The fact that
no bond is broken during this reaction enables us to
study the whole system with a MM force field. With the
AMBER united atom model a total of 90 atoms are
handled. When the whole system is treated classically the
Hessian matrix does not have the form shown in Eq. (8),
but the full Hessian matrix is built. In addition, a QM/
MM partition was also done: the QM part includes the
14 atoms from the all-atom proline ring treated with the
PM3 Hamiltonian (this partition takes into account that
the frontier cannot be in the peptide bond owing to the
fact that it has some double-bond character), whereas
the MM part is the rest of the decapeptide involving 83
united atoms. Two link atoms are also included. Both
the complete system and the QM region are neutral.
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Table 1. Comparative results corresponding to the location of the minima for the different systems studied

System  Number of Initial AE gNR-L-BFGS® gNR-BFGS®  RFO-m-BFGS(HI)® RFO-m-BFGS(HF)®

quantum gradient (kcal/mol)?

mechanical norm .

and molecular  (kcal mol™*A™")

mechanical

coordinates
DHAP 30 + 15 10.811 11.2 96/104 34/77 46/77 10/11
PHTAL 27 + 30 11.739 3.48 35/41 39/83 63/108 28/43
TIM1 21 + 36 5.191 0.55 121/129 68/146 81/128 37/48
TIM2 21 + 36 5.429 0.71 123/130 56/117 90/142 57/66
LDH 90 + 75 15.39 76.04 4101/4196 479/965 1852/1935 1838/1959
LDH 165 + 0 18.47 26.86 972/1014 215/433 716/809 282/302
ANTA 0 + 270 8.044 10.2 403/423 268/539 321/544 58/60
ANTA 48 + 249 124.61 815.0 3215/3340 625/1258 1949/2054 1459/1467

<‘Energy difference between the initial geometry and the minimum
"Number of steps/number of gradient and energy evaluations

4.2 Location of the minima

Although nowadays several cheap and efficient mini-
mization algorithms exist, we present here the compara-
tive results between our algorithm and two others that
are widely used. To this aim we carried out geometry
minimizations with our algorithm (RFO-m-BFGS) and
two quasi-Newton—Raphson algorithms. These two
quasi-Newton—Raphson algorithms use the BFGS and
the L-BFGS update Hessian matrix formula. These two
algorithms, which were also coupled to the Roar-cp
module, are labeled qNR-BFGS and qNR-L-BFGS.
The results corresponding to the minimizations with the
L-BFGS update formula [18] were obtained using
information from the five previous iterations. After
several tests this number of iterations was proven to be
the best compromise between the efficiency of the
method and memory requirements.

The comparative results for the search for the minima
are presented in Table 1. We are able to choose the
minimization algorithm between qNR-BFGS, qNR-L-
BFGS and RFO-m-BFGS. The unity matrix is taken as
the initial guess Hessian matrix for gNR-BFGS and
gNR-L-BFGS. For the sake of comparison we used two
different initial guess Hessian matrices for RFO-m-
BFGS. So, RFO-m-BFGS(HI) stands for the RFO-m-
BFGS algorithm with the unity matrix as an initial
guess, whereas the initial Hessian matrix for the RFO-m-
BFGS(HF) algorithm was calculated numerically
according to Eq. (8) (except for the ANTA system when
the whole system is treated classically).

In each system the minimum reached for all of the
algorithms is always the same. So we just specify
the energy difference between the starting point and
the minimum reached. A numerical Hessian calcula-
tion was done in order to characterize the stationary
point. The convergence criterion on the root mean
square (RMS) of the gradlent is 10 kcal/(mo] - A),
except for ANTA, which is 107 kcal/(mol - A) We
also present the number of steps and the number of
energy and gradient evaluations (the energy and gra-
dient calculations required to build up the numerical
initial guess Hessian matrix are not counted). This

information will give us the efficiency of every step.
Note that the energy and the gradient are calculated
only once each step unless the displacement vector
needs to be corrected. This is why the number of steps
is always smaller than the number of energy and
gradient calculations, as seen in Table 1.

No global conclusions about the compared efficiency
between the different algorithms can be drawn, we can
just note a general tendency because the behavior of an
optimization depends not only on the algorithm but also
on the intrinsic characteristics of the system (size,
starting point, fixed atoms and convergence criteria).
Nevertheless it can be seen that qNR-L-BFGS tends to
need more steps than the other algorithms. This is due to
the fact that it only works with the information of the
last five preceding steps, and in this way is able to treat
big size systems avoiding the usual memory problems.

Comparing the results for the columns corresponding
to the RFO-m-BFGS(HI) and RFO-m-BFGS(HF) al-
gorithms, it is evident that when an initial Hessian ma-
trix is calculated numerically the number of steps and
the energy and gradient evaluations required decrease
compared to when the starting Hessian matrix is a unity
matrix. It can be seen that RFO-m-BFGS(HF) behaves
reasonably well in comparison with gNR-BFGS. On the
other hand, bearing in mind that the number of energy
and gradient evaluations compared to the number of
steps indicates the efficiency of the step, it is shown that
the efficiency of an RFO-m-BFGS(HF) step is greater
than that of a qNR-BFGS step because the ratio
between those two numbers for qNR-BFGS is always
more than 2, whereas the ratio for the RFO-m-
BFGS(HF) algorithm is close to 1.

In addition, we also studied how the RMS of the
gradient behaves during the minimization process. Al-
though we present here only the QM/MM ANTA sys-
tem as an illustrative example (Fig. 2) the comparative
results are similar in all the systems studied. It can be
seen that the RFO-m-BFGS(HF) algorithm reaches a
low-gradient region faster, and it is in this quasi-con-
verged region where it spends most of the steps. This is
true even for the cases for which qNR-BFGS needs
fewer steps to reach the minimum. The reason why
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RFO-m-BFGS(HF) reaches a low-gradient zone faster
can be due to the information that provides the initially
calculated Hessian matrix and the RFO procedure
efficiency. The reason why once in a quasi-converged
RMS gradient region, RFO-m-BFGS(HF) can some-
times require many steps could be the intrinsic conic
behavior of RFO because it does not give the correct
shift [20, 21, 22, 23, 24, 26]. Keeping this in mind we
think that it would be useful to take advantage of the
RFO-m-BFGS(HF) efficient behavior for the initial
steps and when a low gradient is reached switching the
algorithm to gqNR-BFGS or gNR-L-BFGS if a
minimization is being performed.

4.3 Location of transition states

We report the test of the RFO-Powell algorithm with the
same reactive systems as for the minima in Table 2. We
recall that for a transition-state search the BFGS
formula cannot be used because in this case the M
matrix involved in Eq. (5) is not positive-definite [40].
The initial structure for the transition-state search is
usually the most energetic point in a few-point scan-
ning along the approximated reaction path. During the
search we have to ensure that the algorithm is fol-
lowing the correct direction. Then, at each step the
eigenvector of the recently updated Hessian matrix,
which has the maximum overlap with the eigenvector
of the previous step augmented Hessian matrix asso-
ciated with the negative eigenvalue (v=1), is looked
for. Note that, according to Egs. (2) and (3), the first
component of the augmented Hessian eigenvector is
not taken into account in order to perform the scalar
products. Then, a negative eigenvalue is assigned to
the eigenvector of the Hessian matrix found in that

function of the number of steps
of minimization with four
algorithms

Table 2. Results corresponding to the location of transition states
for the different systems studied

System  Number of

Initial AE RFO-Powell
quantum gradient (kcal/ (HF)®
mechanical and norm mol)*
molecular (kcal
mechanical mol A7)
coordinates

DHAP  30+15 6.86 22.82 56/59
PHTAL 27+30 1.18 4.03 39/54
TIM 21+36 11.17 3.70 65/88
LDH 165+0 6.78 4.19 614/636
LDH 36+ 129 3.24 0.87 316/392
ANTA 0+270 8.04 7.78  291/315
ANTA  48+249 2.10 1.25  421/598

“Energy difference between the initial geometry and the transition
state

"Number of steps/number of gradient and energy evaluations

way, and the rest of the eigenvalues are forced to
be positive. Once the transition state is reached we
have characterized the structure found by a numerical
calculation of the Hessian matrix.

Overall, the RFO-Powell algorithm performs well
in locating transition states. The ratio between the
number of steps and the number of gradient and energy
evaluations is still close to 1 as previously found during
the minimization process. Our implementation allows the
location of transition-state structures even if they are
quite far away from the starting structures as depicted in
Table 2 for the DHAP system (i.e, AE=22.82 kcal/mol).
Therefore, we can deduce from the previous results that
the RFO-Powell algorithm is a solid algorithm to locate
transition-state structures of systems from small to med-
ium size, involving different ratios of QM and MM atoms,



described in Cartesian coordinates, including link atoms
and representing several types of chemical reactions.

5 Final remarks

We have presented a robust algorithm able to locate
mimima and transition-state structures on QM, MM
and QM/MM potential-energy surfaces. It is based on a
suitable approximation to an initial full Hessian matrix,
a modified BFGS formula or a Powell update formula
for the location of a minimum or a transition state,
respectively and the RFO. This RFO avoids the Hessian
matrix inversion required by a quasi-Newton—Raphson
method. It also introduces in an automatic way a shift
that preserves the current behavior of the optimization
process. This algorithm has been successfully tested for a
variety of chemical and biochemical systems from small
to medium size.

The good behavior of the algorithm presented here
has encouraged us to extend it to locate minima and
transition states on QM/MM potential-energy surfaces
corresponding to real reactive biochemical systems
including thousands of atoms. We will modify this
algorithm in order to take into account the special
problems derived from the large size of those systems,
but still handling the information contained in a full
Hessian matrix. To this aim, the limited Powell algo-
rithm will be used as update method to locate transition
states, and a Lanczos-type algorithm associated with the
RFO will be employed to solve the secular equation.
This work is now in progress.
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